Weakly Convergent Nonparametric Forecasting of Stationary Time Series
نویسندگان
چکیده
The conditional distribution of the next outcome given the infinite past of a stationary process can be inferred from finite but growing segments of the past. Several schemes are known for constructing pointwise consistent estimates, but they all demand prohibitive amounts of input data. In this paper we consider real-valued time series and construct conditional distribution estimates that make much more efficient use of the input data. The estimates are consistent in a weak sense, and the question whether they are pointwise consistent is still open. For finite-alphabet processes one may rely on a universal data compression scheme like the Lempel-Ziv algorithm to construct conditional probability mass function estimates that are consistent in expected information divergence. Consistency in this strong sense cannot be attained in a universal sense for all stationary processes with values in an infinite alphabet, but weak consistency can. Some applications of the estimates to on-line forecasting, regression and classification are discussed.
منابع مشابه
A new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملپیشبینی خشکسالی هیدرولوژیک با استفاده از سریهای زمانی
INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...
متن کاملSpectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملStrongly consistent nonparametric forecasting and regression for stationary ergodic sequences
Let {(Xi, Yi)} be a stationary ergodic time series with (X, Y ) values in the product space R ⊗ R. This study offers what is believed to be the first strongly consistent (with respect to pointwise, least-squares, and uniform distance) algorithm for inferring m(x) = E[Y0|X0 = x] under the presumption that m(x) is uniformly Lipschitz continuous. Autoregression, or forecasting, is an important spe...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 43 شماره
صفحات -
تاریخ انتشار 1997